Правило Тициуса—Боде. Эмтг и правило тициуса-боде Закон боде

Расстояния от планет Солнечной системы до Солнца возрастают согласно простому арифметическому правилу

Есть что-то такое в нумерологии, что буквально завораживает людей. Будучи ученым, занимающимся общественно-просветительской деятельностью, я регулярно получаю письма от людей, нашедших очередную «разгадку» какой-либо тайны Вселенной посредством анализа последовательности десятичных знаков в записи числа % или массы одной из элементарных частиц. Логика у них простая: если найдена какая-то закономерность в числовой последовательности, благодаря которой удается объяснить какое-либо природное явление, значит, за этим кроется что-то фундаментальное. Надуманным «законам» подобного рода в этой книге уделяется мало внимания, однако для правила Тициуса-Боде, хотя оно и относится к вышеупомянутой категории, следует сделать исключение (ничего предосудительного в том, как оно изначально было выведено и проверено, нет; просто со временем выяснилось, что оно не всегда работает, - и мы это увидим).

В 1766 году немецкий астроном и математик Иоганн Тициус заявил, что выявил простую закономерность в нарастании радиусов околосолнечных орбит планет. Он начал с последовательности 0, 3, 6, 12, в которой каждый следующий член образуется путем удвоения предыдущего (начиная с 3; то есть 3 х 2 П, где п = 0, 1, 2, 3, ...), затем добавил к каждому члену последовательности 4 и поделил полученные суммы на 10. В итоге получились весьма точные предсказания (см. таблицу) расстояний известных на то время планет Солнечной системы от Солнца в астрономических единицах (1 а.е. равна среднему расстоянию от Земли до Солнца).

Радиусы планет (в астрономических единицах), предсказанные правилом Тициуса-Боде (средняя колонка). Для сравнения даны их реальные радиусы (правая колонка)

Совпадение прогноза с результатом действительно впечатляет, особенно если учесть, что открытый лишь в 1781 году Уран также вписался в предложенную Тициусом схему: по Тициусу - 19,6 а.е., фактически - 19,2 а.е. Открытие Урана подогрело интерес к «закону», прежде всего к таинственному провалу на удалении 2,8 а.е. от Солнца. Там, между орбитами Марса и Юпитера, должна быть планета - считали все. Неужели она столь мала, что ее невозможно обнаружить в телескопы?



В 1800 году даже была создана группа из 24 астрономов, ведших круглосуточные ежедневные наблюдения на нескольких самых мощных в ту эпоху телескопах, они даже дали своему проекту громкое название «Небесная стража», но увы... Первую

малую планету, обращающуюся по орбите между Марсом и Юпитером, открыли не они, а итальянский астроном Джузеппе Пиацци (вішерре Ріа77І, 1746-1826), и произошло это не когда-нибудь, а в новогоднюю ночь 1 января 1801 года, и открытие это ознаменовало наступление XIX столетия. Новогодний подарок оказался удален от Солнца на расстояние 2,77 а.е. Однако диаметр этого космического объекта (933 км) явно не позволял счесть ее искомой крупной планетой. Однако в течение всего нескольких лет после открытия Пиацци было обнаружено еще несколько малых планет, которые назвали астероидами, и сегодня их насчитывается много тысяч. Подавляющее большинство из них обращается по орбитам, близким к предсказываемым правилом Тициуса-Воде, и по последним гипотезам они представляют собой «строительный материал», который так и не сформировался в планету (см. гипотеза

газопылевого облака).

Немецкий астроном Иоганн Воде, будучи под большим впечатлением от выводов Тициуса, включил их в свой учебник по астрономии, изданный в 1772 году. Именно благодаря его роли как популяризатора его имя возникло в названии правила. Иногда его даже несправедливо называют просто правилом Воде.

И как реагировать человеку, столкнувшемуся с такой «магией» последовательности чисел? Я всегда рекомендую задающимся подобными вопросами придерживаться умного совета, который дал мне в свое время умудренный опытом преподаватель теории вероятностей и статистики. Он часто приводил пример поля для гольфа. «Предположим, - рассуждал он, - что мы задались целью рассчитать вероятность того, что шар для гольфа приземлится на точно заданную травинку. Такая вероятность будет практически нулевой. Но после того, как мы ударили клюшкой по шару, шару ведь надо куда-то упасть. И рассуждать о том, почему шар упал именно на эту травинку, бессмысленно, поскольку, если бы он упал не на нее, он упал бы на одну из соседних».

Применительно к правилу Тициуса-Воде: шесть цифр, входящих в эту формулу и описывающих удаление планет от Солнца, можно уподобить шести шарам для гольфа. Представим себе вместо травинок всевозможные арифметические комбинации чисел, которые призваны дать результаты для расчета радиусов орбит. Из бесчисленного множества формул (а их можно насочинять даже больше, чем имеется травинок на поляне для гольфа) обязательно найдутся и такие, что по ним будут получены результаты, близкие к предсказываемым правилом Тициуса-Воде. И то, что правильные предсказания дала именно их формула, а не чья-либо еще, не более чем игра случая, и к настоящей науке это «открытие» отношения не имеет.

В реальной жизни все оказалось даже проще, и к статистическим доводам для опровержения правила Тициуса-Воде прибегать не пришлось. Как это часто бывает, ложная теория была опровергнута новыми фактами, а именно открытием Нептуна и Плу-

тона. Нептун обращается по очень неправильной, с точки зрения Тициуса-Воде, орбите (прогноз для его радиуса 38,8 а.е., в действительности - 30,1 а.е.). Что касается Плутона, то его орбита вообще лежит в плоскости, заметно отличающейся от орбит других планет, и характеризуется значительным эксцентриситетом, так что само упражнение с применением правила становится бессмысленным.

Так что же, выходит, правило Тициуса-Воде относится к разряду псевдонаучных? Не думаю. И Тициус, и Воде искренне пытались отыскать математическую закономерность в строении Солнечной системы, и ученые продолжали и продолжают заниматься поисками подобного рода. Проблема в том, что ни тот, ни другой не пошли дальше игры чисел и не попытались отыскать физическую причину того, почему орбиты ближних планет подчиняются подмеченной ими закономерности. А без физического обоснования «законы» и «правила» подобного рода остаются чистой нумерологией - и, как показывают имеющиеся сегодня данные, весьма некорректной нумерологией.

ИОГАНН ЭЛЕРТ ВОДЕ (Johann Elert Bode, 1748-1826) - немецкий астроном и математик, родился в Гамбурге. Астроном-самоучка, первый трактат по астрономии опубликовал в возрасте 17 лет. С 1772 года и до самой своей смерти - главный редактор «Астрономического ежегодника» (Astronomisches Jahrbuch) Берлинской академии наук, превративший его в прибыльное и престижное издание. В 1781 году предложил для открытой Вильямом Гер-шелем (William Herschel) новой планеты название Уран. С 1786 года - директор Астрономической обсерватории Берлинской академии. Составитель звездных атласов, которые переиздаются до наших дней. Самый известный из них - «Уранография» (Uranographia, 1801), который до сих пор считается лучшим и самым красочным звездным атласом в истории человечества. Автор геометрических границ между созвездиями,

Где T1 и T2 - периоды обращения двух планет вокруг Солнца, a1 и a2 - длины больших полуосей их орбит.

Если орбита следующей планеты в 2 раза дальше предыдущей (т.е., a 2 = 2 a 1 ), то период её орбиты будет примерно в 3 раза больше :

T 2 = T 1 × √(2 3 /1) = T 1 × √8 ≈ 2,828 T 1 ≅ 3T 1 .

§ 4.4. Орбитальные резонансы планет СС

Орбита следующей планеты с учетом поправки Ньютона: T 2 = √8 × T 1 (M + m 1) / (M + m 2) . Т.е., если следующая планета меньше предыдущей, то ее резонанс лучше приблизится к 3:1, если больше - то сдвинется к 2,5 и может стать 5:2. Поэтому реально резонансы могут быть разные (табл. 2).

Планета Расчётное
расстояние,
а.е.
Истинное
расстояние,
а.е.
Кратность осей
Период,
зем.лет
Период,
мерк.лет
Период в
ΔT Вен-Мерк
Другие
резонансы
1 Меркурий 0,4 0,387 - 0,24 1 - 1/4 Зем, 2/5 Вен
2 Венера 0,7 0,723 1,5-2 Мер (1,85) 0,62 ≅ 3 [?] 1 (0,38 з.л.) ~2/3 или 3/5 Зем
3 Земля 1,0 1,000 2,5 Мер 1,0 ~4 1 (0,38 з.л.) 5/3 Вен
4 Марс 1,6 1,523 ~2 Вен 1,88 ~8 2,3 (0,88 з.л.) 3 Вен, ~2 Зем
5 Астероиды 2,8 2,20-3,65 2 Мар, 3 Зем, 3-5 (≅4) Вен, 7 Мер 4,6 19 (~20) 7,1 (2,7 з.л.) 7 Вен, ≅ 2 Мар
6 Юпитер 5,2 5,202 ≅ 2 Аст, ≅ 7/2 или 10/3 Мар, 7 Вен 11, 9 50 19,2 (7,3 з.л.) 5/2 Аст, 6 Мар, 12 Зем, 19 Вен
7 Сатурн 10,0 9,538 2 Юп 29,5 123 (~120) 46,3 (17,6 з.л.) 5/2 Юп, 30 Зем, ≅ 40 Вен
8 Уран 19,6 19,182 2 Сат, ≅ 7 Аст 84,0 350 143,4 (54,5 з.л.) ≅ 3 Сат, 7 Юп
9 Нептун 38,8 30,058 3 Сат, 6 Юп, ≅ 10 Аст 164,8 687 (~700) 212,6 (80,8 з.л.) 2 Ур, 14 Юп
10 Плутон 77,2 39,44 2 Ур 248,5 1035 (~1050) 220,3 (83,7 з.л.) 3/2 Неп, 3 Ур, 8 Сат, 21 Юп

Табл. 2. Периоды обращения планет СА и их резонансы.

Наиболее простыми резонансами являются 1 / 2 , 3 / 2 , 5 / 2 ; 1 / 3 , 2 / 3 ; 3 / 4 ; 2 / 5 , 3 / 5 ; 3 / 7 , 4 /7 .

Положим их в последовательный ряд: 0,3 (1/3), 0,4 (2/5 и 3/7), 0,5 (1/2), 0,6 (3/5 и 4/7), 0,7 (2/3), 0,8 (3/4); 1,5 (3/2); 2,5 (5/2). Как видим, здесь находится место Меркурию, ВЫенере, Марсу, Фаэтону (астероидам).

Ряд этот получается слишком плотным - вероятно, из этих исключаются из-за гравитационного напряжения между объектами орбит. Полностью заполнится он может только для малых тел.

§ 4.5. Орбитальные правила для планет земной группы

Расположим в ряд расстояния от Солнца до планет, выраженные в астрономических единицах:

0,39; 0,72; 1,0; 1,52; 2,8 (расчётное); 5,20; 9,54; 19,18; 30,06; 39,44

Умножим его на 5: 1,95; 3,6; 5; 7,6; 14; 26; 47,7; 95,9;150,3; 197,2 .

Мы видим убедительное сходство, особенно для планет земной группы, относящихся к внутренней орбитальной зоне.

Получается, если орбиты планет-гигантов расположены друг к другу по удвоенным расстояниям (к Нептуну раньше это тоже могло относится), то орбиты земных планет раскладываются в ряд Фибоначчи. Правило же Тициуса-Боде вмещает в себя обе эти закономерности.

§ 4.6. Орбитальные пробелы в астероидах и кольцах Сатурна

Большую серию резонансных движений, воспринимаемых опять-таки как досадные помехи в стройной теории, доставляет пояс астероидов [ , ]. Хорошо известны щели (пробелы, люки) Кирквуда [ , с.с. 9, 53], соответствующие резонансам 2:5, 1:3 с обращением Юпитера. Менее заметные понижения в кривой распределения периодов обращения астероидов возникают при резонансах 1:4, 1:5, 3:5, 3:7 .

Существует и противоположная ситуация – группировка орбит вблизи точек 3:4 и 2:3 .

В музыкальной терминологии это «кварта» и «квинта». «Прима» также устойчива и соответствует группе троянцев.

Знаменитая «щель Кассини» в Кольцах Сатурна имеет резонансную природу. Она занимает ту зону, в которой частички, составляющие кольца Сатурна, имели бы периоды, близкие к 1/2 периода Мимаса, 1/3 периода Энцелада и1/4 периода Тефии.

Для понимания этого явления недостаточно было обнаружить щель и открыть спутники Сатурна. С этим справился сам Кассини. Мало было даже открыть другие пробелы в кольцах Сатурна. Только в ХIХ веке Кирквуд, сопоставив пробелы в поясе астероидов с кольцами Сатурна, осознал единый резонансный Механизм образования пробелов.

§ 4.7. Орбитальные правила для транснептунов

Начиная с 30 а.е. (орбита Нептуна) начинается пояс Койпера [ , с. 2; , с. 37], который продолжается примерно до 55 а.е. от Солнца. К этой области принадлежит карликовая планета Плутон .

На самой орбите Плутона находятся резонансные ему плутино, чьи 3 оборота равны 4 оборотам Нептуна ~220 лет.

Далее открытые малые планеты располагаются «слоями» (возможно, не все еще открыты, возможно, имеют место щели и пробелы, как в астероидах и кольцах Сатурна, под влиянием неких более массивных космических тел).

От 40 до 60 а.е. (период обращения 250-290 лет) малые планеты идут сплошным массивом.

В Галактике у большинства звезд с экзопланетами самые массивные из них расположены не на наибольшем удалении от светил, а рядом с ними (ближе, чем Меркурий к Солнцу) - там находятся горячие экзопланеты с небольшими периодами вращения.

В феврале 2017 года была открыта экзопланетная система TRAPPIST-1 . Вокруг красного карлика обращается 7 планет, 6 из которых находятся в цепочке резонансов 2:3:4:6:9:15:24 . Видно, что здесь средний множитель для следующей орбиты - 1,5, - как в земной группе. Возможно, это особенность всех близких орбит. Далее, по аналогии, в этой звёздной системе могут быть планеты с резонансами 36:54.

5. Природа явления

Перейдём от астрономических исследований (того, что видим) к физическим (того, что не видим). Попытаемся установить: 1) законы формирования резонансной конфигурации в мультиорбитальной системе; 2) физический смысл правила Тициуса-Боде (если он есть), уточнив его и выразив через переменные.

§ 5.1. Кратности и разности в резонансах

§ 5.2. Суммарные гравитационные потенциалы на орбитах

§ 5.3. Физический смысл закона Тициуса-Боде и его уточнение

6. Применение полученных знаний

§ 6.1. Вычисение "на кончике пера" новых орбит

На основании правил распределения транснептуновых планет (см. ) и уточненного закона Тициуса-Боде (см. ) для них можно предположить наиболее вероятные орбиты пока не найденных новых планет Солнечной системы .

§ 6.2. Восстановление предыдущих конфигураций орбит

На основании правила Тициуса-Боде пока весьма осторожно можно высказаться о том, что Нептун был на средней орбите Плутона (40 а.е.). Видимо, именно Нептун сформировал пояс Койпера . Сам Плутон, возможно, был спутником Нептуна.

Сами спутники Нептуна, вероятно, принадлежали поясу Койпера. Это можно эскизно исследовать по их плотностям.

И. Д. Тициус

И. Э. Боде

Правило Тициуса - Боде (известно также как закон Боде) представляет собой эмпирическую формулу , приблизительно описывающую расстояния между планетами Солнечной системы и Солнцем (средние радиусы орбит). Правило было предложено И. Д. Тициусом в г. и получило известность благодаря работам И. Э. Боде в г.

Правило формулируется следующим образом.

Последовательность D i - геометрическая прогрессия , кроме первого числа. То есть,

Эту же формулу можно записать по-другому:

Встречается также другая формулировка:

Результаты вычислений приведены в таблице. Видно, что этой закономерности соответствует и пояс астероидов , а вот Нептун , наоборот, из закономерности выпадает, причём его место странным образом занимает Плутон , который по решению XXVI Ассамблеи МАС планетой вообще не является.

Планета i k Радиус орбиты (а. е.)
по правилу фактический
Меркурий −1 0 0,4 0,39
Венера 0 1 0,7 0,72
Земля 1 2 1,0 1,00 1,825
Марс 2 4 1,6 1,52 1,855
Пояс астероидов 3 8 2,8 в сред. 2,2-3,6 2,096 (по орбите Цереры)
Юпитер 4 16 5,2 5,20 2,021
Сатурн 5 32 10,0 9,54 1,9
Уран 6 64 19,6 19,22 2,053
Нептун выпадает 30,06 1,579
Плутон 7 128 38,8 39,5 2,078 (по отношению к Урану)
Эрида 8 256 77,2 67,7

Когда Тициус впервые сформулировал это правило, ему удовлетворяли все известные в то время планеты (от Меркурия до Сатурна), имелся лишь пропуск на месте пятой планеты. Тем не менее, правило не привлекло большого внимания до тех пор, пока в 1781 году не был открыт Уран, который почти точно лёг на предсказанную последовательность. После этого Боде призвал начать поиски недостающей планеты между Марсом и Юпитером. Именно в том месте, где должна была располагаться эта планета, была обнаружена Церера . Это вызвало большое доверие к правилу Тициуса - Боде среди астрономов, которое сохранялось до открытия Нептуна. Когда выяснилось, что, кроме Цереры, примерно на том же расстоянии от Солнца находится множество тел, формирующих пояс астероидов, была выдвинута гипотеза, что они образовались в результате разрушения планеты (Фаэтона), которая раньше находилась на этой орбите.

Правило не имеет конкретного математического и аналитического (через формулы) объяснения исходя только из теории гравитации - мешает так называемая проблема взаимодействия трех тел.

Резонансным орбитам сейчас в основном соответствуют планеты или группы астероидов, которые постепенно (за десятки и сотни миллионов лет) выходили на эти орбиты. В случаях когда планеты (астероиды и планетоиды за Плутоном) не расположены на стабильных орбитах (как Нептун) или не расположены в плоскости эклиптики (как Плутон) наверняка в ближайшем (относительно сотни миллионов лет) прошлом имели место инциденты нарушавшие их орбиты (столкновение, близкий пролет массивного внешнего тела). Со временем (быстрее к центру системы и медленне на окраинах системы) они неизбежно займут стабильные орбиты, если им не помешают новые инциденты.

Наличие стабильных орбит вызванных резонансами между телами системы впервые численно смоделированно (компьютерная симуляция движения точечных взаимодействующих масс вокруг резонирующего центра - Солнца, представленного как две точечные массы с упругой связью) и приведено в сравнении с реальными астрономическими данными в работах 1998-99 годов профессора Рену Малхотра Renu Malhotra. Смотри ссылки ниже и домашнюю страницу автора: http://www.lpl.arizona.edu/~renu/ Само существование резонансных орбит орбитальный резонанс в нашей системе подтверждается экспериментальными данными по распределению астероидов по радиусу орбиты и плотности объектов KBO пояса Койпера по радиусу их орбиты. Смотри фильм (3 Мб) с докладом того же автора (в котором она приводит графики распределения астероидов по орбитам) http://www.lpl.arizona.edu/~renu/malhotra_presentations/09-migrating_planets.mov , а также графики распределения планетоидов KBO или так называемых Plutinos/plutoids плутино (http://en.wikipedia.org/wiki/File:TheKuiperBelt_classes-en.svg) на странице посвященной объектам пояса Койпера в английской версии: http://en.wikipedia.org/wiki/Kuiper_belt

Три планеты Солнечной системы - Юпитер, Сатурн и Уран - имеют систему спутников, которые, возможно, сформировались в результате таких же процессов, как и в случае самих планет. Эти системы спутников образуют регулярные структуры, на основе орбитальных резонансов , которые, правда, не подчиняются правилу Тициуса - Боде. С другой стороны другие системы спутников планет так же могут быть возмущены внешними инцедентами в недавнем прошлом и находится в данный момент на пути к стабильным орбитам.

Сравнивая структуру стабильных орбит планет Солнечной системы с электронными оболочками простейшего атома можно обнаружить некоторое подобие, хотя в атоме электрон практически мгновенно переходит только между стабильными орбитами (электронными оболочками), а в планетарной системе выход на стабильные орбиты занимает десятки и сотни миллионов лет.

Ссылки

  • Malhotra, R., Migrating Planets, Scientific American 281(3):56-63 (1999)
  • Hahn, J.M., Malhotra, R., Orbital evolution of planets embedded in a massive planetesimal disk, AJ 117:3041-3053 (1999).
  • Malhotra, R., Chaotic planet formation, Nature 402:599-600 (1999).
  • Malhotra, R., Orbital resonances and chaos in the Solar system, in Solar System Formation and Evolution, Rio de Janeiro, Brazil, ASP Conference Series vol. 149 (1998). Preprint
  • Showman, A., Malhotra, R., The Galilean Satellites, Science 286:77 (1999).
  • Планетарные орбиты и протон. «Наука и жизнь» № 1, 1993.

Wikimedia Foundation . 2010 .

В 1766 г. немецкий учёный И. Тициус фон Виттенберг предложил эмпирическую формулу, описывающую известные к тому времени большие полуоси орбит планет Солнечной системы от Меркурия до Сатурна (имелся лишь пропуск на месте пояса астероидов):

Rn = 59,84 + 44,88*2n.

Здесь Rn – большая полуось орбиты планеты млн. км; n = –?, 0, 1, 2, 3, … (табл. 8).

В дальнейшем немецкий астроном И. Боде, восхищаясь правильностью в расстояниях планет, стал пропагандировать правило Тициуса. Теперь оно называется «правилом Тициуса – Боде». С открытием Урана, орбита которого достаточно точно легла на предсказанную последовательность, появился интерес к правилу Тициуса, и Боде призвал начать поиски недостающей планеты между Марсом и Юпитером (табл. 8, n = 3). В предсказанном месте была обнаружена Церера, что вызвало доверие астрономов к правилу. Никакого теоретического обоснования правило Тициуса – Боде на сегодняшний день не имеет, но косвенную пользу науке принесло благодаря открытию Цереры и Урана.

С позиций устройства солнечной системы, данного в настоящей монографии, правило Тициуса – Боде носит случайный характер и не является законом, так как оно:

Противоречит законам Кеплера и Ньютона (правило начинает отсчёт с орбиты Меркурия, а должно от Солнца в силу центрального действия гравитации);

Не объясняет орбиты Меркурия, Нептуна, и пояса астероидов
(и колец вокруг планет);

Не учитывает иерархию структуры Солнечной системы.

Таблица 8

Сравнение расчётных значений больших полуосей орбит планет
по правилу Тициуса – Боде с наблюдением

Радиус орбиты, млн. км

Расчёт по правилу

Наблюдение

Меркурий

Пояс астероидов

выпадает

Случайность правила Тициуса – Боде связана с рядом причин:

Правило получено для ограниченного количества планет, так как в то время были известны не все планеты;

Отношения больших полуосей орбит для пояса астероидов, Юпитера, Сатурна и Урана кратно 2 и имеет своё объяснение, предлагаемое в данной монографии;

Для планет земной группы отношение больших полуосей орбит также близко 2, как результат интерференции;

Нормировка зависимости на большую полуось орбиты Земли без учёта различий планет-гигантов и планет земной группы.

Правило Тициуса – Боде следует рассматривать как эмпирическую математическую регрессию, построенную на ограниченном количестве точек. С момента своего открытия правило трактовалось механистическим взглядом на гравитацию. Правило не объясняет пояс астероидов (и колец планет), не видит разницы в физических параметрах планет-гигантов и планет земной группы, не учитывает пространство как носитель гравитационного поля и его волновые свойства, и другое.

Простой, но более жесткий анализ исходных данных по правилу Тициуса – Боде, с учетом иерархии Солнечной системы, подтверждает выводы приведенные выше (рис. 8).

Рис. 8. Правило Тициуса – Боде. Регрессионные зависимости (линии)
для логарифмов по основанию 2 больших полуосей орбит
планет земной группы (R1) и планет-гигантов (R2).
Точки – наблюдательные данные

Если бы закон Тициуса – Боде выполнялся, то в на рис. 8 была бы одна регрессия на все наблюдательные точки (то есть для планет-гигантов и для планет земной группы вместе) с коэффициентом при переменной n равным 1. Для планет-гигантов (регрессия R2) указанный коэффициент близок 1 (на рис. 8 его значение равно 0,9774) и, следовательно, средние радиусы орбит планет и пояса астероидов кратны 2 по правилу Тициуса – Боде. Однако даже в этом случае порядок коэффициента k для планет из табл. 2 лучше порядка n табл. 8.

Для планет земной группы (регрессия R1) правило Тициуса – Боде не выполняется, так как коэффициент существенно отличается от единицы (равен 0,5374). Кроме того, в этом случае получена статистическая значимость регрессии, а не физическая закономерность на уровне закона (коэффициент детерминации R2 = 99,44 % статистически достаточно высок, но не соответствует значимости физического закона).

Рис. 8 приведен здесь, чтобы наглядно продемонстрировать существование иерархии планет в Солнечной системе (то есть то, что планеты – гиганты отличаются от планет земной группы условиями «формирования» и, следовательно, массами).

В данной монографии рассмотрена задача многих тел, которая решается благодаря тому, что вокруг Солнца формируется предопределённый профиль пространства. Этот профиль пространства однозначно связан с массой центрального тела, и для него существует строго определённая планетная система (в том числе по массам планет). Это отличается от формулировки по И. Ньютону, когда массы взаимодействующих тел произвольны, и ближе к формулировке И. Кеплера, когда имеется преобладающий центр тяготения.

Результаты исследований показали, что современная форма уравнений Дж. Максвелла позволяет вычислить отсутствующие фундаментальные константы, описывать гравитон подобно фотону и что сам гравитон является пространством. Закон всемирного тяготения И. Ньютона часть современной формы уравнений Дж. Максвелла – теперь гравитационной теории поля. «Квантово-волновые» свойства гравитона позволяют строить теорию Солнечной системы подобно волновой квантовой механике Э. Шредингера. Математическая статистика регрессионных зависимостей наглядно демонстрируют силу теоретических законов. Предложенная теория показывает случайное совпадение, и ограниченность эмпирического правила Тициуса – Боде.

философия пифагорейцы кеплер вселенная

Прямым последователем пифагорейцев может считаться немецкий ученый Иоганн Даниэль Тициус (1729-1796) был таким же многосторонне развитым, как и Пифагор. Он был и математик, и астроном, и физик и даже биолог, классифицировал растения, животных и минералы.

В 1766 году Тициус в примечании к книге, которую он переводил, поделился интересными наблюдениями. Если написать ряд чисел, первое из которых будет 0,4; второе: 0,4+0,3; третье: 0,4+0,3·2; четвертым: 0,4+0,3·4 и т.д., с удвоением для каждого последующего члена этого ряда множителя при 0,3, то полученный ряд чисел почти совпадает со значением средних расстояний от Солнца до планет, если эти расстояния выражены в астрономических единицах.

Однако, серьезный интерес к этой интеллектуальной находке ученые проявили лишь через шесть лет, когда другой немецкий ученый, астроном Иоганн Элерт Боде (1747-1826) опубликовал формулу Тициуса в своей книге 1772 г. и привел некоторые результаты, вытекающие из ее применения. Он так много говорил и писал по этому поводу, что за правилом повсеместно закрепилось название правила Тициуса-Боде.

Но после открытия Гершелем в 1781 г. новой планеты, для которой Боде предложил название Уран, доверие к правилу Тициуса-Боде существенно возросло. Среднее удаление Урана от Солнца составляет 19,2 а.е. и он практически точно попал на восьмое место в ряду Тициуса.

Но если правило верно, то остается пустым пятое место. И в 1976 году ряд европейских астрономов во главе с придворным астрономом герцога Саксен-Кобург-Готского венгром Ксаверием фон Цахом (1754-1832) создали общество («отряд небесной полиции»), поставившее своей целью обнаружить «что-то» на расстоянии, соответствующем порядковому номеру n=3.

Однако открытие было сделано случайно директором сицилийской обсерватории в г. Палермо Джузеппе Пиацци (1746-1826) при составлении им каталога звезд Планету назвали Церерой, но она оказалось слишком маленькой. Вскоре на таком же расстоянии от Солнца были открыты еще множество небольших объектов: Паллада, Юнона, Веста и т.д., которые получили общее название малые планеты или астероиды («звездоподобные»). Так был открыт пояс астероидов, а правило Тициуса-Боде было еще раз подтверждено. Но не все шло так гладко. Серьезный удар по правилу нанесли сначала открытие Нептуна (1846), а позднее - Плутона (1930), планет, которые не вписывались в него.

Математически правило можно записать так:

R n = 0,4 + 0,3·2 n .

Здесь R n - среднее расстояние от Солнца до планеты.

Подставляя значения n для каждой планеты (пропуская Нептун), нетрудно даже в уме найти средний радиус их орбиты (табл. 2).

Название

Истинное расстояние

от Солнца, a.e.

Расстояние по правилу

Тициуса - Боде, а.е.

Меркурий

Пояс астероидов

Плутон (пояс Койпера)

  • 30,07
  • 39,46

Однако, правило Тициуса-Боде - это не закон, подобный, например, законам Кеплера или Ньютона, а правило, которое было получено из анализа имеющихся данных о расстояниях планет от Солнцаю. Существует достаточно много различных теорий, претендующих на объяснение зависимости Тициуса-Боде: гравитационная, электромагнитная, небулярная, резонансная, но ни одна из них не может объяснить происхождение геометрической прогрессии для планетных расстояний и в то же время устоять перед всей критикой.

Оно каким-то образом связано с проявлением еще не изученных закономерностей формирования планет Солнечной системы из протопланетного облака Исключение Нептуна пытаются объяснить тем, что он поменял орбиту. Причем одни утверждают, что в момент формирования он располагался ближе к Солнцу - поэтому и плотность у Нептуна больше, чем у других гигантов, другие считают, что он сформировался за орбитой Плутона.

Американский планетолог Харольд Левисон, работая в 2004 году в международной команде исследователей предложил новую модель формирования Солнечной системы, которая получила название модель Ниццы. Модель Ниццы допускает, что планеты-гиганты родились совсем на других орбитах, а затем перемещались в результате их взаимодействия с планетезималями, пока Юпитер и Сатурн, две внутренние планеты-гиганты, не вошли 3,9 млрд. лет тому назад в орбитальный резонанс 1:2, который дестабилизировал всю систему. Гравитационные силы обеих планет сработали тогда в одном направлении. Левисон считает, что это похоже на качели: каждый рассчитанный во времени толчок подбрасывает качели все выше. В случае с Юпитером и Сатурном каждый толчок гравитации растягивал орбиты планет, пока они не приблизились к их современной схеме. Нептун и Уран оказываются на орбитах с большим эксцентриситетом и вторгаются во внешний диск протопланентного вещества, сталкивая десятки тысяч планетезималей с прежде устойчивых орбит. Эти возмущения почти полностью рассеивают исходный диск из каменных и ледяных планетезималей: из него удаляется 99% его массы. Так началась катастрофа. Астероиды поменяли свои траектории и направились к Солнцу. Тысячи из них врезались в планеты внутренней Солнечной системы. Наконец, большие полуоси орбит планет-гигантов достигают своих современных значений, и динамическое трение с остатками диска планетезималей уменьшает их эксцентриситет и вновь делает орбиты Урана и Нептуна круговыми.Теория Ниццы объясняет позднюю тяжёлую бомбардировку и отвечает на вопрос почему все лунные кратеры образовались практически одновременно 3,9 млрд. лет тому назад. Если бы масса Сатурна была несколько большей, порядка массы Юпитера, то как показывают расчеты, планеты земной группы были бы поглощены газовыми гигантами.

Кроме того оказалось, что это правило применимо и к другим планетным системам. Такое заявление сделали мексиканские ученые, изучая звездную систему 55 Рака. По мнению ксиканских астрономов, тот факт, что правило Тициуса-Боде выполняется в 55 Рака, показывает, что эта закономерность не является случайным свойством, присущим только Солнечной системе.

В чем же смысл правила Тициуса-Боде,? В том, что существует выделенная орбита, орбита Меркурия, которая обозначает начало отсчета, нижнюю границу планетарной системы, начало координат с пометкой "0". Орбита, расстояния от которой до каждой из орбит по которым вращаются планеты Солнечной системы (движущиеся в первом приближении по окружностям), есть члены геометрической прогрессии со знаменателем два. Исключение составляет Нептун, однако вычисленная по этому же закону восьмая орбита тоже не пустует и занята карликовой планетой Плутон. Важно понимать следующее: правило Тициуса-Боде выполняется с хорошей точностью несмотря на огромный разброс (в четыре порядка) планет по массе. При этом планеты выстраиваются на своих орбитах по закону геометрической прогрессии ориентируясь не на Солнце и не на Юпитер, а на Меркурий, самую маленькую планету, масса которой ничтожно мала в сравнении с Юпитером (в шесть тысяч раз меньше). Цели, которые при этом преследовал неведомый проектировщик и строитель остаются неизвестными.

Таковы были попытки пифагорейцев построить гармоничный космос. Как и пифагорейцы, космология "считывает", определяет всю Вселенную числом, обрисовывает ее механизмы и действия формулами, а математика - язык науки. Поиски продолжаются.